Welcome

Effective Strategies for Building Enclosures

Lois Arena, PE, Director, Passive House Services Karla Butterfield, Sustainability Director

Learning Objectives

- 1. Review building enclosure design best practices
- 2. Demonstrate effective methods of controlling air movement through assemblies and discuss the impacts on energy performance
- 3. Discuss common products details used for thermal control, focusing on the differences between cavity insulation and continuous insulation
- 4. Using case studies and project details, demonstrate unique considerations and for the five control layers

Control Layers

- 1. Rainscreen Sheds the Majority of Water
- 2. Drainage Plane Water Resistive Barrier (WRB), moves water away from substrates (flashing, weeps)
- 3. Air Barrier Prevent Air Leakage
- 4. Thermal Prevent Conductive Energy Loss
- 5. Vapor Barrier Prevents Warm Humid Air from reaching a Cold Surface and Condensing

Rainscreen - Cladding

Masonry

Brick/CMU/Cast Stone (Anchored Masonry Veneer) Thin Brick/Cultured Stone (Adhered Masonry Veneer) Fiber Cement Panels/Siding Wood/Synthetic Wood Panels/Siding/Trim Metal Panels/Trim High Pressure Laminate Panels EIFS

Cement Plaster

Cladding - Masonry

Panels/Siding/Trim – Directly Attached

Panels/Siding/Trim – Sub Framing Attached

EIFS/Cement Plaster

Design Strategies

Water Management Design

Barrier Systems

Water Management by a continuous, impervious surface Vulnerable to any defects (continuity) in the cladding surface Relies on sealant at transitions

Drainage Systems

Durable cladding resists bulk water penetration Continuous backup waterproofing layer (can also function as air barrier)

Rainscreen Systems Pressure Equalized Back Ventilated

Barrier Systems

Mass Masonry

Cast-in-Place concrete

Coating

Architectural Precast Concrete Panels

Drainage Systems

Masonry Veneer

Adhered Masonry Veneer

Panels/Siding/Trim

Cement Plaster

Rainscreen Systems

Lightweight panels and joints deflect most of the rainwater

Ventilated cavity eliminates the remainder of the moisture by natural drainage and evaporation

Barrier Systems

Rainscreen Systems

Discrete Anchor Systems

Masonry Veneer/Siding/EIFS Limited thermal bridging Consider fastener penetration through water/air barrier

Ties

Girt Systems

Panel Systems Some thermal bridging Provide improved detailing at penetrations Combining clips and girts can improve thermal performance

Adhered Systems

Thin masonry veneer/ Cement Plaster Difficult to incorporate continuous insulation Sensitive to installation environmental factors

For Cladding Finish Systems: Girts Stainless Steel Clips Aluminum Clips **Fiberglass Clips** Galvanized Metal **Fiberglass Girts** Galvanized Girts **Thermoset Resin** Clips Girts Description Description Description Description Description Description Description Aluminum clips are Fiberalass clips have These clips are usually 1 Replacina galvanized steel clips light weight and a much lower I aalvanized steel and Typical z-airts are Fiberglass girls are These girls have a low strong. They are a I are used to support with stainless steel thermal usually aalvanized installed and used thermal conductivity. more elastic and non I rainscreen and panel | ones can greatly transmittance steel. Most projects Made of fire resistant the same way as reduce the thermal corrosive alternative coefficient than any I cladding systems. use these to support resin material. Can typical metal z-girt. to traditional metal conductivity. metal equivalent. their cladding The fiberalass be spaced 16" or 24" clips. systems. material reduces o.c. and is very thermal bridging. strong. Thermal efficiency Thermal efficiency Thermal efficiency I Thermal efficiency per SWA: 63-74% per SWA: 38-52% per SWA: 64-79% | per SWA: 46-59% Thermal efficiency Thermal efficiency Thermal efficiency per SWA: 96% per SWA: 43%-53% per SWA: 91%-95% . 6 9 9 9 9 9 9 0 0 0 00 20 20 80 80 8 9 8 8 9 9 63% for Steel backup 38% for Steel backup 64% for Steel backup 46% for Steel backup 2 2 2 2 2 2 74% for CMU backup 52% for CMU backup 79% for CMU backup 2 3 2 2 20 1 59% for CMU backup 96% for Sleet backup 53% for Steel backup 91% for Steel backup 96% for CMU backup 43% for CMU backup 95% for CMU backup Example Products: Example Products: Example Products: A-Clip, MESSCHAN Alpha Brackets Cascada Clip Example Products: Armatherm Z Girt Example Products: Green Girt-Simple Z Standard Product I Standard Product

For Cladding Finish Systems: Clips

Thermal Stop Clips

Description

This clip has a plastic thermal stop at the base and head to help mitigate thermal bridging.

Thermal efficiency per SWA: 67-80%

67% for Steel backup 80% for CMU backup

> Example Products: Pos-I-Tie Thermal Clip. Nvelope NV1 Thermal Clip

Continuity of Control Layers

Readability – clearly communicate the intent

Durability – select materials appropriate for the life of the building

Maintainability – consider frequency and effort of maintenance

Sustainability – consider impact on the environment

Liability – shortcomings in the above can contribute to costly

Condensation Control

• Why does condensation form on the outside of a cold drink in the summer?

Dew point!

Detail Moisture Vapor Control Strategy

- First condensing surface must be above dew point temperature of ambient air
- Thermally broken windows
- Control indoor humidity conditions, specify: Proper local ventilation
- Construction moisture!

What is Dew Point?

- Warm air can hold more moisture than cold air
- The dew point is reached when the air is cooled to the point of saturation (100% Relative Humidity)

EEBA

• When this occurs we call it condensation

Cold Weather Condensation

- Can occur when warm moist interior air contacts cooler surfaces such as windows
- Condensation forms when the surface temperature is below the dew point temperature for the interior air

Prevent Condensation

- Raise the temperature of the condensing surfaces
- Add a vapor retarder to inhibit the moisture from reaching the condensing surface
- Lower the interior space relative humidity
- Reduce the interior "moisture loading"

Airflow in Buildings

Infiltration: air movement into the building Occurs in areas of negative pressure inside the building

Exfiltration: air movement out of the building Occurs in areas of positive pressure inside the building

Copyright Steven Winter Associates, Inc. 2011

Air Flow in Buildings

3 Main Driving Forces:

- Stack effect
- Mechanical effect
- Wind effect

Air Flow in Buildings

Air Sealing Priorities

- Stop the Stack Effect!
- Go after biggest holes first, duh
- Top of the building is usually first priority
- Base of the building is next
- Center of building last, if even necessary

Methods of Heat Transfer

- Heat is a form of energy
- When heat moves from place to place, it is referred to as "Heat Transfer"
- Heat Transfer occurs in three ways:
 - Conduction
 - Convection
 - Radiation

Heat Transfer

Conduction

- Occurs when heat energy moves through a solid or fluid material
- Energy is transferred from one molecule to the next
- Examples of conduction:

Conduction

Convection

- Convection occurs when heat is carried from one place to another
- Convection requires a "fluid medium" (i.e. a gas or liquid)

Convection

- Convection in homes usually occurs when air in the house moves around due to temperature gradients
- Warm air is lighter (i.e. less dense) than cold air
- Cold air falls, warm air rises

Convection Loops

- When convection occurs in an enclosed space, the air (or fluid) will circulate around the space as it is heated and cooled, this is referred to as a convective loop
- Examples of places where convective loops could be found . . .?

Radiation

- Heat radiates to cold surfaces. Must be an air gap between the two bodies.
- Examples of places where radiation effects can be found . . . ?

 33) —					U U	RAWING	L THE		
	districted.				COMA GONT	10020	MORECEDAL GREE		
	SIVER.	80	GODE DARK/ OBJENAL NOTING UNIT MARRIES	ABLO	EXERCITE D. D. WILLIAM	A71.4	DOOM DET		
- CO.	and the second se	R	NALL TITLE	ABI	DODROW DEVANDED	#13	HIDDIN		
	Evenue concrete non-	R (2)	FLOORICELING ROOF THREE	ALZ	EVERSON ELEVATIONS	ACOL	HERDON DE		
00	DENCH / REPORTATION CONTROL PLAN	103	RATED HALL FLOOR CONSTRUCTION	48.1	BALDING BETRING	Aft	HINDLIN OF		
	BIE HERNOLDER	10.4	AR SEALING RETALS	48.2	BALDING BOTIONS	ALDS	HIRDON		
-	TOPCHNET FEDERINGAL FLAN	85	AR SEALING DETALS	40.5	BULISHID IBOTISHID	AT24	HIDGHIR		
680	LANKER FLAN	LEO	LOW GROOT WAR- Intelligent PLACE	A41	HALL STOREN	47.08	NUMBER OF T		

N

TOD A TETRICI LIST

DOUR DETALS

DOM NOT NO.

0000000	LA ()	
MO	EVENENT HEORINGAL PLAN	_
MEX	FRIST PLOCE NEORINGAL PLAN	
14.2	ISOMO TO FIFTH FLOOR HEOHINGAL FLAN	- 14
14.0	BOON PLACE HEORINGAL PLAN	
18.4	BOOT MECHANICAL PLAN	
10.0	same book made more more min a minor	- 82

Common Walls

Air Barrier

Demising Walls

	1° GYPSUM LINER PANELS @ EA. SIDE OF PARTY WALL (TYP) SUPPORTED W/BREAKAWAY CLIPS @ 24° O.C HORIZ. & VERT. (PROVIDE VERTICAL BLOCKING	
MANANAN MA	AS REQUIRED 1" AIR SPACE @ EACH SIDE OF PARTY WALL (TYP.) 2x4 WOOD STUDS @ 16" O.C. (EFFECTIVELY FIRESTOPPED)	1.1
	3-1/2" SOUND ATTENUATING FIBERGLASS INSULATION	I
MANANANA MA	1 LAYER 5/8" I.R. G.M.B., EACH SIDE	l
	/ BASE @ EA. SIDE OF PARTITION AS SCHEDULED	

DEMISING DOUBLE WALL AT EXTERIOR / CORRIDOR WALL

Notes:

A, B, C. Intent: reduce leakage between exterior / corridor wall and demising wall / interior partition

A. Options:

 Expanding foam
 Plywood, drywall or rigid foam board with edges caulked

A. Mineral wool or fiberglass batts are NOT acceptable as an air barrier

C. Option: apply drywall adhesive to framing BEFORE installing drywall

Responsibilities:

Drywall: C Mech/Elec/Plumb: A, B

EEBA

Vapor Control

Air Control Layer Vapor Control Layer **Thermal Control Layer** Cladding **Control Layer Structure**

Vapor Control

- Class I . <0.1 perms e.g. polyethylene sheet, sheet metal, or aluminum facing.
- Class II. 0.1 1.0 perms e.g., faced batts, and some vapor control paints.
- Class III. 1.0 10 perms e.g. latex or enamel paints.

Vapor Retarder Definitions

- **Permeance [perm]:** the rate that moisture vapor moves through a given construction layer for the given **thickness**
- **Permeability [perm in]:** the rate that moisture vapor moves through a given construction material at a standard thickness (1 in or 1 cm)
- **Permeance = Permeability ÷ Layer Thickness**

Vapor Retarder Definitions

Example:

A certain type of SPF has a permeability of 1.2 perm per inchA) What is the perm rating of 1.5 inches of SPFA?B) What vapor retarder class does this fall under?

Answer:

A) Permeance = permeability ÷ layer thickness Permeance = 1.2 perm in/1.5 in = 0.8 perm

```
Class III: 1.0 < perm <=10 perm
B) Class II: 0.1 < perm <=1.0 perm
Class I: < =0.1 perm
```


Vapor Control

Code: CZ 1-3, 4A, 4B: No Interior Vapor Control is required (or recommended) on the interior side of framed walls

Wood sheathing and plywood: 10 perms (very permeable) might allow drying to outside **OSB:** 2 perms becomes more of a Vapor Retarder as it gets wet.

Vapor Control

(2015 IBC): CZ 5-8, Marine 4: Class I or II Vapor Retarders SHALL be provided on the interior side of frame walls.

UNLESS

Continuous Insulation meets the required R value . . . than a Class III (latex paint) VR is allowed (Class I & II should not be allowed!).

EXTERIOR WALLS

TABLE 1405.3.2 CLASS III VAPOR RETARDERS

ZONE	CLASS III VAPOR RETARDERS PERMITTED FOR:*
Marine 4	Vented cladding over wood structural panels Vented cladding over fiberboard Vented cladding over gypsum Insulated sheathing with <i>R</i> -value \geq R2.5 over 2 × 4 wall Insulated sheathing with <i>R</i> -value \geq R3.75 over 2 × 6 wall
5	Vented cladding over wood structural panels Vented cladding over fiberboard Vented cladding over gypsum Insulated sheathing with <i>R</i> -value \geq R5 over 2 × 4 wall Insulated sheathing with <i>R</i> -value \geq R7.5 over 2 × 6 wall
6	Vented cladding over fiberboard Vented cladding over gypsum Insulated sheathing with <i>R</i> -value \ge R7.5 over 2 × 4 wall Insulated sheathing with <i>R</i> -value \ge R11.25 over 2 × 6 wall
7 and 8	Insulated sheathing with <i>R</i> -value \ge R10 over 2 × 4 wall Insulated sheathing with <i>R</i> -value \ge R15 over 2 × 6 wall

Winter

Tinterface= Tindoor-[(Tindoor-Toutdoor) x (Rcavity/Rtotal)]

Ok for some gut check math but Avg. temp is too arbitrary

Average Daily Temperature °F	Minimum Recommer	nded Exterior CI R-Value	
Dec/Ian/Feb	R21 Stud Cavity	R15 Stud Cavity	
34°	R 4	R 3	
32°	R 5.5	R 4	
30°	R 7	R 5	Washington, DC ~ CZ 4
28°	R 8.5	R 6	Baltimore, MD ~ CZ 4
26°	R 10	R 7	Worcester MA ~ C7 5

This is also achievable with closed cell foam in the cavity (CZ 4, R8-ish)

Image credit: Green Building Advisor

No vapor control required on the interior side of framed walls in CZ 1, 2, 3, 4a, 4b

Plant hardiness zones are moving North at the rate of 13 miles per decade

CLIMATE ZONE	FENESTRATION	SKYLIGHT ^b U-FACTOR	GLAZED FENESTRATION SHGC ^{5, #}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> -VALUE	MASS WALL <i>R</i> -VALUE	FLOOR <i>R</i> -VALUE	BASEMENT ^c WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> -VALUE & DEPTH	CRAWL SPACE [©] WALL <i>R</i> -VALUE
1	1.2	0.75	0.30	30	13	3/4	13	0	0	0
2	0.65 ^j	0.75	0.30	30	13	4/6	13	0	0	0
3	0.50 ^j	0.65	0.30	30	13	5/8	19	5/13 ^f	0	5/13
4 except Marine	0.35	0.60	NR	38	13	5/10	19	10/13	10, 2 ft	10/13
5 and Marine 4	0.35	0.60	NR	38	20 or 13+5 ^h	13/17	30 ^g	10/13	10, 2 ft	10/13
6	0.35	0.60	NR	49	20 or 13+5 ^h	15/19	30 ^g	15/19	10, 4 ft	10/13
7 and 8	0.35	0.60	NR	49	21	19/21	38 ^g	15/19	10, 4 ft	10/13

TABLE 402.1.1 INSULATION AND FENESTRATION REQUIREMENTS BY COMPONENT^a

CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^b	SKYLIGHT ^ь <i>U-</i> FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> -VALUE	MASS WALL <i>R</i> -VALUE	FLOOR <i>R</i> -VALUE	BASEMENT [©] WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> -VALUE & DEPTH	CRAWL SPACE [©] WALL <i>R</i> -VALUE
1	NR	0.75	0.25	30	13	3/4	13	0	0	0
2	0.40	0.65	0.25	38	13	4/6	13	0	0	0
3	0.32	0.55	0.25	38	20 or 13+5 ^h	8/13	19	5/13 ^t	0	5/13
4 except Marine	0.32	0.55	0.40	49	20 or 13+5 ^h	8/13	19	10/13	10, 2 ft	10/13
5 and Marine 4	0.30	0.55	NR	49	20 or 13+5 ^h	13/17	30 ^g	15/19	10, 2 ft	15/19
6	0.30	0.55	NR	49	20+5 ⁿ or 13+10 ^h	15/20	30 ^g	15/19	10, 4 ft	15/19
7 and 8	0.30	0.55	NR	49	20+5 ^h or 13+10 ^h	19/21	38 ^g	15/19	10, 4 ft	15/19

EEBA

2018 IECC

2009 IECC

TABLE 1405.3.2 CLASS III VAPOR RETARDERS

ZONE		CLASS III VAPOR RETARDERS PERMITTED FOR:*
Mari 4	ine	Vented cladding over wood structural panels Vented cladding over fiberboard Vented cladding over gypsum Insulated sheathing with <i>R</i> -value \geq R2.5 over 2 × 4 wall Insulated sheathing with <i>R</i> -value \geq R3.75 over 2 × 6 wall
5		Vented cladding over wood structural panels Vented cladding over fiberboard Vented cladding over gypsum
		Insulated sheathing with <i>R</i> -value \ge R5 over 2 \times 4 wall Insulated sheathing with <i>R</i> -value \ge R7.5 over 2 \times 6 wall
6		Vented cladding over fiberboard Vented cladding over gypsum Insulated sheathing with <i>R</i> -value \geq R7.5 over 2 × 4 wall Insulated sheathing with <i>R</i> -value \geq R11.25 over 2 × 6 wall
7 and 8		Insulated sheathing with <i>R</i> -value \ge R10 over 2 \times 4 wall Insulated sheathing with <i>R</i> -value \ge R15 over 2 \times 6 wall

2015 IBC

Photo: Pavel Bendov

2015 IBC

TABLE 1203.3 INSULATION FOR CONDENSATION CONTROL

CLIMATE ZONE	MINIMUM R-VALUE OF AIR-IMPERMEABLE INSULATION ^a		
2B and 3B tile roof only	0 (none required)		
1, 2A, 2B, 3A, 3B, 3C	R-5		
4C	R-10		
4A, 4B	R-15		
5	R-20		
6	R-25		
7	R-30		
8	R-35		

a. Contributes to, but does not supersede, thermal resistance requirements for attic and roof assemblies in Section C402.2.1 of the International Energy Conservation Code.

ELEMENTS OF A LARGE MULTIFAMILY PASSIVE HOUSE BUILDING

MULTIFAMILY CONSIDERATIONS

Energy Recovery Ventilation Determining the right system for any project can be challenging. There are pros and cons to both central and decentralized systems. A certified Passive House consultant can help the project team decide which system is best for your building.

Domestic Hot Water

In large scale multifamily buildings in the US the majority of DHW systems are central systems with recirculation loops and high efficiency, natural gas water heaters. Minimizing pipe lengths and optimizing pump sizes and insulation are essential to meet the rigid Passive House primary energy and cooling thresholds.

Efficient Lights & Appliances Multifamily projects face special challenges here because they must run corridor and egress lighting 24/7. They are also faced with a greater number of appliances per square foot compared with single family homes. Both of these factors result in increased cooling and primary energy demands. The use of controls and daylighting should be incorporated wherever possible to reduce energy use.

Thank you!

Join the conversation - #EEBASummit2019

Save the dates for next year:

http://www.swinter.com/wp-content/uploads/SWA_High-Performance-Walls-Handout.pdf

http://www.swinter.com/wp-content/uploads/SWA-MultifamilyAirSealingGuide-Masonry.pdf

•Ductwork thermal losses can range from 10-45%

Interior ducts locations may impact cost, aesthetics and envelope loads

How ventilation works

 Fresh air is fed into the system via an external walt vent. With an optional air/ground source geothermal heat exchanger, the heat exchangers use geothermal energy to pre-temper outside air before it enters the system.

 The Zehnder ComtaAr ventilation device recovers up to 95% of the energy from the extract air and returns it to the fresh air. This can be humidified, dehumidified, heated and cooled using optional components.

 The Zehnder ComfoFresh air distribution system channels optimally tempered fresh air to individual rooms as needed and verits extract air to the outside. The air volume can be adjusted individually for each room.

Benefits

- Continuous supply of fresh air
 Saves energy through heat
- Retains property value by
- preventing mildew
 Promotes good health
- Protects against outside noise
- Government subsidized (in select markets)

- Warms incoming winter air (or the reverse)
- · Good to remove humidity
- Good for favorable humidity levels in & out

MERV Rating Chart

	14	90-95%	>98%	Most Tobacco Smoke	Smoking Lounges	12 pockets Box Filter- Rigid Style Cartridge
	13	89-90%	>98%	Proplet Nuceli (Sneeze)	Superior Commercial Buildings	Filters 6 to 12" deep m ay use lofted or paper media.
	12	70-75%	>95%	1.0-3.0 pm Particle Size	Superior Residential	Bag Filter- Nonsupported
	11	60-65%	>95%	Legionella Humidifier Dust Lead Dust	Better Commercial Buildings	microfine fiberglass or synthetic media, 12-36 in. deep, 6- 12 pockets
	10	50-55%	>95%	Milled Flour Auto Emissions	Hospital Laboratories	Box Filter- Rigid Style Cartridge Filters 6 to 12" deep m ay use lofted or paper media.
-	9	40-45%	>90%	Welding Fumes		
	8	30-35%	>90%	3.0-10.0 pm Particle Size	Commercial Buildings	Pleated Filters- Disposable, extended surface area, thick with cotton-polyester blend media

Particulates: It's Not Just Dirt

Chemicals

