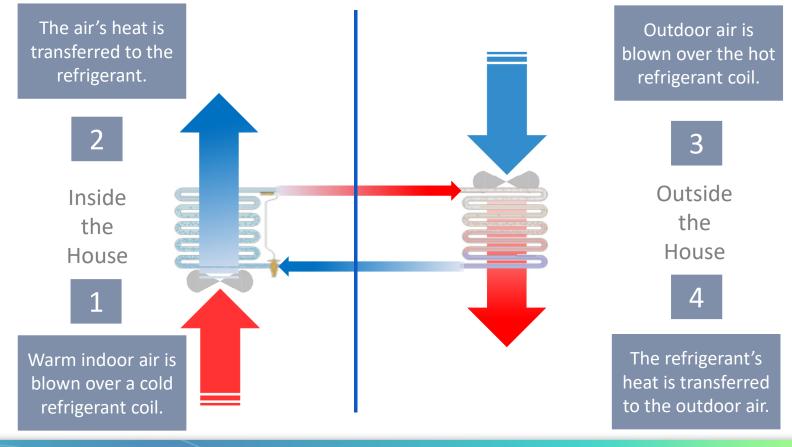


Checking Your Work: Properly Installed HVAC in High-Performance Homes

EEBA High-Performance Home Summit 2019
Dean Gamble
October 01, 2019

- Improper airflow:
 - Average airflow ~20% below target. Blasnik et al. (1995)
 - Average airflow 14% below design. Proctor (1997)
 - Measured airflow ranging from 130 510 CFM / ton. Parker (1997)
 - 70% of units had airflow < 350 CFM / ton. Neme et al. (1999)
 - Improper airflow in 44% of systems. Mowris et al. (2004)

- Incorrect refrigerant charge:
 - In 57% of systems. Downey/Proctor (2002)
 - In 62% of systems. Proctor (2004)
 - In 72% of systems. Mowris et al. (2004)
 - In 82% of systems. Proctor (1997)


5

	Study Author	State	Existing or New Home?	Sample Size	Average Airflow	Airflow <350 cfm	Airflow w/in 10% of 400/ton	Energy Savings Potential
	Blasnik et al. 1995a	NV	New	30	345	50%		00/
	Blasnik et al. 1995b	CA	New					8%
				10	319	90%		
	Blasnik et al. 1996	AZ.	New	22	344	64%	29%	10%
	Hammarlund et al. 1992	CA	New	12			30%	10%
	Hammarlund et al. 1992	CA	New	66		76%	14%	12%
	Neme et al. 1997	MD	New	25	340			
	Palani et al. 1992	n.a.	n.a.	n.a.				4%
	Parker et al. 1997	FL	Both	27	270	89%	7%	10%
	Proctor & Pernick 1992	CA	Existing	175		44%		, ,-,,
i	Proctor 1991	CA	Existing	15			33%	
٠	Proctor et al. 1995a	CA	Existing	30	300	80%	11%	
٠	Rodriguez et al. 1995	n.a.	n.a.	n.a.				2%
	Rodriguez et al. 1995	n.a.	n.a.	n.a.				10%
	VEIC/PEG 1997	NJ	New	52	372		30%	7%
	Average				327	70%	22%	8%

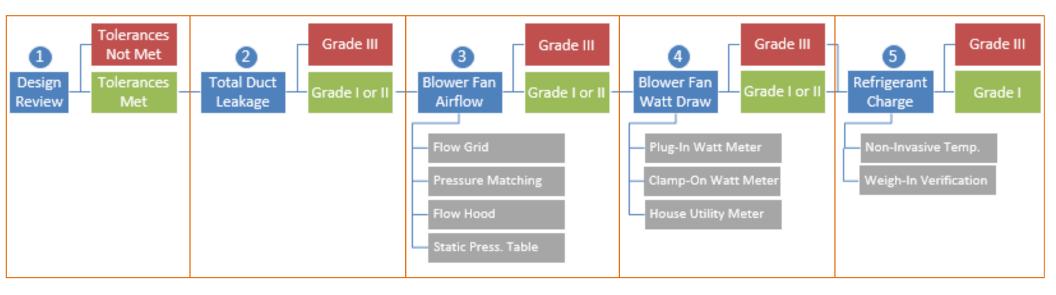
tential	Notes
8%	Est @ 33% combined charge/air flow correction benefits
10%	Est @ 33% combined charge/air flow correction benefits Single family results
12%	Existing Charge

		Existing		Charge			Energy	
		or New	Sample	correct to	% over	% under	Savings	
Study Author	State	Homes?	Size	mfg spec	charge	charge	Potential	Notes
Blasnik et al. 1995a	NV	New	30	35%	5%	59%	17%	Est @ 67% combined charge/air flow correction benefits
Blasnik et al. 1995b	CA	New	10		- 10	***		Est @ 67% combined charge/air flow correction benefits
Blasnik et al. 1996	AZ	New	22	18%	4%	78%	21%	Est @ 67% combined charge/air flow correction benefits
Farzad & O'Neal 1993	n.a.	n.a.	n.a.		. 10		5%	Lab test of TXV; 8% loss @20% overchg; 2% loss @20% underchg
Farzad & O'Neal 1993	n.a.	n.a.	n.a.				17%	Lab test of Orifice; 13% loss @20% overchg; 21% loss @ 20% underchg
Hammarlund et al. 1992	CA	New	12				12%	Single family results
Hammarlund et al. 1992	CA	New	66	31%	61%	8%		Multi-family results
Katz 1997	NC/SC	New	22	14%	64%	23%		Charge measured in 22 systems in 13 homes
Proctor & Pernick 1992	CA	Existing	175	44%	33%	23%		Results from PG&E Model Energy Communities Program
Proctor 1991	CA	Existing	15	44%		-		Fresno homes
Proctor et al. 1995a	CA	Existing	30	11%	33%	56%		Today Tolling
Proctor et al. 1997a	NJ	New	52		,	,-	13%	Est @ 67% combined charge/air flow correction benefits
Rodriguez et al. 1995	n.a.	n.a.	n.a.					Lab test of TXV EER; 5% loss at both 20% overchg & 20% underchg
Rodriguez et al. 1995	n.a.	n.a.	n.a.					Lab test of Orifice EER; 7% loss @ 20% overchg, 22% loss @ 20% underch
Average				28%	33%	41%	12%	

RESNET/ACCA Std. 310: Guiding Principles

- Take a 'carrot' rather than a 'stick' approach.
- Reward incremental improvement.
- Include procedures applicable to both Rater and HVAC professionals.
- Ensure the procedures provide value in and of themselves.

RESNET/ACCA Std. 310: Grading Concept


- Follow the insulation quality-installation model:
 - Grade III: The default. No assessment. No penalty and no credit.
 - Grade II: Assessment completed and the system is ok. Partial credit.
 - Grade I: Assessment completed and the system is very good. Full credit.

Std. 310: Standard for Grading the Installation of HVAC Systems

Task 1: Evaluating the design of the forced-air system

- 1. Rater collects design documentation for the dwelling with the HVAC system under test.
- 2. Rater reviews design documentation for completeness and compares it to the dwelling to be rated. Key features must fall within tolerances defined in the standard. For example:

Floor Area	Outdoor Design Temps	Insulation Levels
Window Area	# Occupants	Infiltration Rate
Indoor Design Temps	Window SHGC	Ventilation Rate

3. If tolerances are met, proceed to next task. Otherwise stop here.

Task 2: Evaluating the total duct leakage

1. Rater measures total duct leakage according to Std. 380, evaluates the results, and assigns a grade:

Grade	Test Stage	# Returns	Total Leakage Limit		
l	Rough-In	< 3	4 CFM/100 sqft or 40 CFM		
	Rough-In	≥ 3	6 CFM/100 sqft or 60 CFM		
	Final	< 3	8 CFM/100 sqft or 80 CFM		
	Final	≥ 3	12 CFM/100 sqft or 120 CFM		
II	Rough-In	< 3	6 CFM/100 sqft or 60 CFM		
	Rough-In	≥ 3	8 CFM/100 sqft or 80 CFM		
	Final	< 3	10 CFM/100 sqft or 100 CFM		
	Final	≥ 3	14 CFM/100 sqft or 140 CFM		
III	N/A	N/A	No Limit		

2. If Grade I or II is achieved, proceed to next task. Otherwise stop here.

- Raters measure the total volumetric airflow going through the blower fan using one of four test methods:
 - A. Pressure Matching
 - B. Flow Grid
 - C. Flow Hood
 - D. OEM Static Pressure Table
- This is just a single measurement. It is not measuring the airflow from each register and summing those.

A. Pressure Matching

- 1. Measure static pressure created in supply plenum during operation of HVAC system.
- 2. Turn off HVAC system, connect a fanflowmeter at the return or at the blower fan compartment.
- 3. Turn on the HVAC system and the flowmeter fan and adjust to achieve same static pressure in supply plenum.
- 4. Determine HVAC airflow by recording airflow of flowmeter fan.

A. Pressure Matching

Pros	Cons
Uses equipment many Raters already own	Can't reach high flows for big systems: needs extrapolation
Accurate: +/- 3%	Need at least one large return duct or must connect at equipment
	Requires hole in supply plenum

B. Flow Grid

- 1. Measure static pressure created in supply plenum during operation of HVAC system.
- 2. Install flow grid in filter slot.
- 3. Measure pressure difference at flow grid and convert to airflow.
- 4. Re-measure static pressure in same location as Step 1, and correct airflow.

B. Flow Grid

Pros	Cons
Easy/simple for many systems	Multiple filter slots in a single system require multiple flow grids
Can work at higher flows	Need to make sure a good seal is achieved around the plate perimeter
	Slightly less accurate +/- 7%
	Requires hole in supply plenum

C. Flow Hood

- 1. Turn on HVAC system.
- 2. Connect flow hood to return grille.
- 3. Turn on flow hood and allow reading to stabilize. This may require an additional step to account for back-pressure.
- 4. Resulting airflow of flow hood determines HVAC airflow.

C. Flow Hood

Pros	Cons
Accurate: +/- 3%	Can be heavy/unwieldy
Easy to use	Can be sensitive to placement
Does not require hole in supply plenum	Can be expensive
	Will not always fit around air inlet

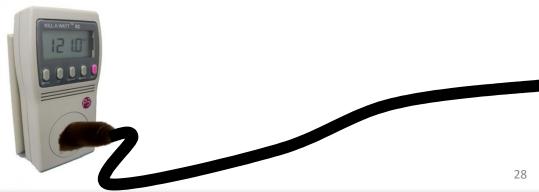
D. OEM Static Pressure Table

- 1. Turn on HVAC system.
- 2. Measure external static pressure of system's supply side and return side.
- 3. Determine fan-speed setting through visual inspection.
- 4. Using blower table information, look up total external static pressure and fan-speed setting to determine airflow.

		EXTERNAL STATIC PRESSURE, (INCHES WATER COLUMN)												
MOTOR	TONS AC ¹	0	.1	0	.2	0	.3	0	4	0	.5	0.6	0.7	0.8
SPEED	~~	CFM	RISE	CFM	RISE	CFM	RISE	CFM	RISE	CFM	RISE	CFM	CFM	CFM
High	3	1,498	N/A	1,446	N/A	1,368	N/A	1,302	N/A	1,227	N/A	1,145	1,059	954
Med	2.5	1,223	N/A	1,182	N/A	1,153	30	1,099	31	1,051	32	982	901	813
Med-Lo	2	983	35	971	35	945	36	919	37	878	39	813	746	659
Low	1.5	816	42	794	43	758	45	734	46	678	50	637	597	523

D. OEM Static Pressure Table

Pros	Cons
Inexpensive equipment	Rater required to get OEM Blower Table for installed equipment
Works for systems of all sizes and airflows	Needs carefully-placed hole in supply-side and return-side, sometimes in equipment housing



- Raters evaluate the watt draw of the blower fan using one of three test methods:
 - A. Plug-In Watt Meter
 - B. Clamp-On Watt Meter
 - c. Utility Meter

A. Plug-In Watt Meter

- 1. Plug in the watt meter into standard electrical receptacle.
- 2. Plug in the equipment with the blower fan into the watt meter.
- 3. Turn on equipment in required mode.
- 4. Record reading from portable watt meter.

A. Plug-In Watt Meter

Pros	Cons
Simple	Not usable with hard-wired equipment
Direct measurement of equipment	

B. Clamp-On Watt Meter

- 1. Turn on equipment in required mode.
- 2. Connect clamp-on watt meter to measure voltage and current at either the service disconnect or through a service panel (not at breaker panel).
- 3. Record reading from clamp-on watt meter.

B. Clamp-On Watt Meter

Pros	Cons
Useable with hardwired equipment that	Requires proper training and safety
has service panel or service disconnect	equipment
Direct measurement of equipment	

C. Utility Meter

- 1. Turn off all circuits except air handler's.
- 2. Turn on equipment in required mode.

For a digital utility meter:

3. Record watt draw from utility meter.

For an analog utility meter:

- 4. For 90+ seconds, record the number of meter revolutions and time.
- 5. Calculate watt draw.

C. Utility Meter

Pros	Cons
Works with all equipment	Indirect measurement, and some meters are less sensitive to low watt draw.
No new equipment needed	Turning off all other circuits can be disruptive

Task 5: Evaluating the Refrigerant Charge

- Raters evaluates the refrigerant charge of the system using one of two test methods:
 - A. Non-Invasive Method
 - B. Weigh-In Verification Method Only for select equipment & conditions

Task 5: Evaluating the Refrigerant Charge

A. Non-Invasive Method

- 'Non-invasive' means no gauges connected to refrigerant system.
- Instead, the temperature of the air and refrigerant lines are used.
- Triage systems into two bins:
 - Grade I Charge is okay
 - Grade III Charge is not okay

Refrigerant Gauges Not Connected

Temperature Sensors
Used Instead

36

A. Non-Invasive Method

- 1. Determine SEER and mfr-specified superheat / subcooling value.
- 2. Measure outdoor air and return air temperatures.
- 3. Use to calculate <u>target</u> temperatures for suction line and liquid line.
- 4. Measure <u>actual</u> temperatures for suction line and liquid line.
- 5. Compare <u>target</u> to <u>actual</u> temperatures; if they are close enough, then the system is properly charged.

A. Non-Invasive Method

Pros	Cons
No refrigerant handling certification needed	New procedure to learn
No risk of refrigerant contamination and leaks	Minimum outdoor air temperature limit
Less Rater liability	

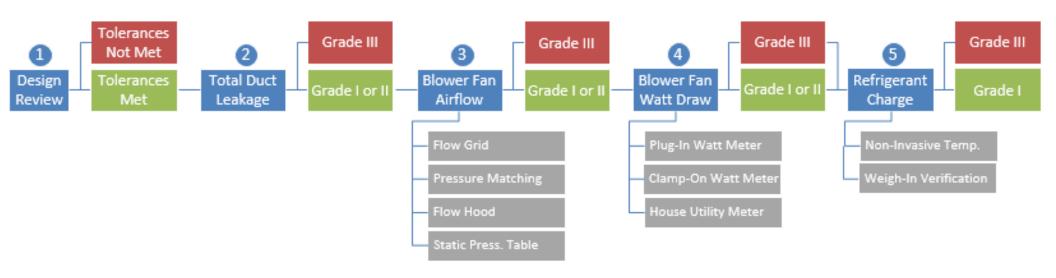
B. Weigh-In Verification Method

- Non-invasive method can't be used for:
 - All outdoor conditions.
 - Mini/multi-split systems.
- In such cases, the weigh-in verification method is used instead.
- Method is primarily a document review rather than a performance test.

B. Weigh-In Verification Method

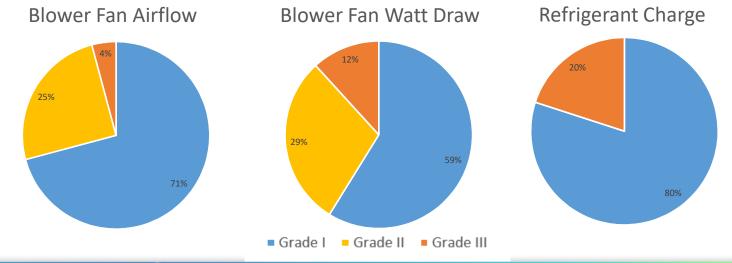
- Contractor provides:
 - A. Weight of refrigerant added / removed
 - B. Line length and diameter
 - C. Default line length from factory charge (usually 15 feet)
 - D. Factory supplied charge
 - E. Geotagged photo of scale with weight added / removed

- Rater then:
 - 1. Measures line length and diameter
 - 2. Uses lookup table to determine how much refrigerant should have been added / removed
 - 3. Verifies the deviation between the lookup and contractor values are within tolerance
 - 4. Verifies location of geotagged photo matches the location of the equipment



B. Weigh-In Verification Method

Pros	Cons
No refrigerant handling certification needed	Requires information from contractor
Works at any outdoor temperature	Not a true performance test

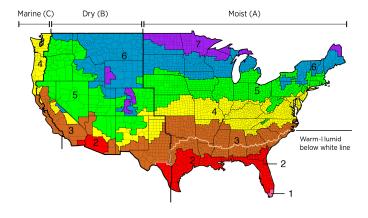

Std. 310: Standard for Grading the Installation of HVAC Systems

Field Test

- Six providers evaluated 18 systems and performed 63 individual tests.
- Required HVAC warm-up time is 15 minutes, but Raters can do other tasks during this time. After that, average time for all tests was 26 minutes.
- Most systems achieved a Grade I designation:

Acknowledgment

- Jon Winkler, Ph.D.
 - Senior Research Engineer
 - Building Energy Science Group
 - National Renewable Energy Laboratory



House Parameters

- New construction, single-family home
 - 3 bed + 2 bath; 2,500 sq. ft
 - Construction based on 2009 IECC
 - Construction and foundation type varied by climate
 - Simulations followed RESNET Standard 301
- Simulated locations
 - CZ 2 Houston, TX
 - CZ 3 Atlanta, GA
 - CZ 4 Washington, DC
 - CZ 5 Chicago, IL

Equipment Assumptions

- Equipment types
 - SEER 14 air conditioner and gas furnace
 - SEER 14, 8.2 HSPF central heat pump
- Equipment assumptions
 - 0.5 W/cfm fan efficiency
 - Manufacturer recommended airflow is 400 cfm/ton

Defect Scenarios

• Four scenarios were analyzed, where the 'fault' is the % deviation from manufacturer-recommended values:

Parameter	Scenario 1: No Fault	Scenario 2: Airflow Fault	Scenario 3: Charge Fault	
Airflow defect level	0%	-25%	0%	-25%
Refrig. charge defect level	0%	0%	-25%	-25%

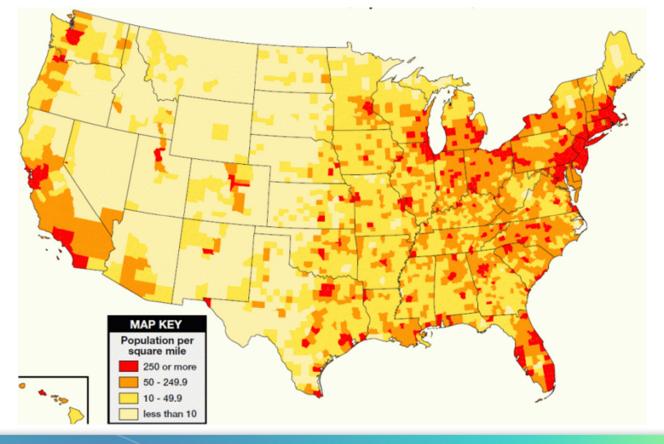
- Generally speaking, in Standard 310:
 - Grade III = -25% fault
 - Grade I = 0% fault

Estimated Maximum ERI Impact

System Type		Scenario 1: No Fault	Defect Scenario Point Potential			
	Location		Scenario 2: Airflow Fault	Scenario 3: Charge Fault	Scenario 4: Air & Charge Fault	
AC	Houston, TX	CZ 2	71	1.5	2.9	4.5
	Atlanta, GA	CZ 3	76	1.2	1.6	2.9
	Washington, DC	CZ 4	78	0.9	1.1	2.1
	Chicago, IL	CZ 5	80	0.5	0.3	0.8
НР	Houston, TX	CZ 2	72	1.9	4	6.0
	Atlanta, GA	CZ 3	75	2.8	4.7	7.0
	Washington, DC	CZ 4	77	3.3	4	6.7
	Chicago, IL	CZ 5	74	3.5	3.6	6.1

Caveats:

- For homes better than 2009 IECC, smaller point potential
- This is the max potential. Many homes will get partial credit.
- Fine-tuning may still occur in Standard 310


Modeling Summary

- Previous work by RESNET Working Group:
 - Initial estimate of point potential using cursory modeling.
 - Air conditioners:
 - Hot climates: ~3 points
 - Mixed climates: ~2 points
 - Cold climates: ~1 point
 - Heat pumps: Non-intuitive low potential in cold climates.
- NREL's approach:
 - Shows similar trends for air conditioners, but with higher potential, partially due to lower efficiency home.
 - More intuitive results for heat pumps.
 - Lays groundwork for software programs to ensure installation quality impacts get modeled consistently.

Service providers are harder to find in small markets

HVAC grading provides a new alternative

- You may still choose to work with credentialed contractors.
- But like duct leakage, standard Rater procedures can be used in lieu of a credential.

Streamlines ENERGY STAR program requirements

- An energy rating completed with certain features locked in:
 - Target score
 - Grade Linsulation
 - Grade I or II HVAC grading
 - Minimum insulation levels, window/door ratings, duct leakage
- Plus:
 - 1. Bedroom pressure-balancing for comfort
 - 2. Reduced thermal bridging for comfort
 - 3. Air sealing details for efficiency and comfort
 - 4. Indoor air quality features for health
 - 5. Water management system features for durability, required by code

1. Standard 310: HVAC Grading Standard

 What it does: Defines how the Rater completes the design review, field tests, and designates the grade.

- Status:

- 1st comment period has concluded
- 2nd comment period should commence in November
- Aiming to finalize in Q1 2020

2. Standard 301: Energy Ratings Update (Non-calcs):

- What it does: Integrates Std. 310 into the overall rating process; updates definitions, minimum rated features, and on-site inspection protocols.
- Status:
 - Submitted in September
 - Aiming to finalize in Q1 2020

3. Std. 310 HVAC Design Report Templates:

- What it does: Incorporates Std. 310 design documentation requirements into Wrightsoft and RHVAC templates.
- Status:
 - Discussions have started
 - Aiming to finalize in Q2 2020

4. RESNET Rater Training:

- What it does: Trains raters on new requirements in Std. 310, prior to use.
- Status:
 - Development has started
 - Aiming to finalize in Q2 2020

5. Calculations Update:

 What it does: Updates standards and software to provide credit for properly installed HVAC systems.

Status:

- In process discussing with RESNET the value of rewarding properly installed HVAC systems in both ERI ratings and HERS ratings.
- More to come...

